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An Ab Initio Model for Solvent Effects in Organic Molecules’
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An ab initio formulation for calculating solvent effects for organic molecules is presented. The solvent effects
are treated in two parts using different models for the solvent. For calculating the reaction field the solvent
is modeled as a continuum with the cavity determined ab initio as a surface enclosing the solute molecule,
which represents the minima of the interaction potential as a solvent molecule approaches a solute molecule
at various angles. The interaction potential is calculated using results of ab initio diatomic calculations on
various pairs of atoms with frozen asymptotic charge densities. The reaction field contribution from the solvent
is evaluated by using the apparent surface charge model with a dense grid of points on the cavity. For the
direct interaction we first construct the first shell of solvent molecules around the solute molecule by bringing
the solvent molecules as discrete systems to the cavity surface. The corresponding energy (consisting of both
the solvent-solute and solventsolvent interaction) is minimized with respect to both the location of solvent
molecules as well as their orientation. The method is demonstrated by applicationganitheaniline in

various solvents. The solvated excitation energies are calculated and compared with experiment. We also
compute the solvated polarizabilities and second-order transition moments.

I. Introduction On the other hand, the strictly continuum models, particularly
the polarization continuum model (PCN#;;15 although quite

anievr?ar;lcta \E)ViItﬂlt\ll(;rrigﬁ;hggoﬁgszfﬂ;\fé::;? tﬁ\heazﬁgr gﬁglsa;]n uccessful for prediction of various solvation-related properties,
P 9 9 re fundamentally (but not fatally) flawed theoretically. First,

properties of intermediate and Iarge-s_ize organic molecules in}he separation of the solute from its nearest solvent shell

the gas phgse. Howe\{er, most experlme.ntal mgasurements %holecules is not large enough for the solute to see a continuous
the properties of organic systems are carried out in the SOIVatedsolvent. Furthermore, particularly in a polar solvent, the solute

phase. It S, therefore,_ of high |nter§§t to develop methods andfails to see a constant dielectric “constant”, since the Boltzmann

computational strategies for describing the effects of solvent factor exp{-pE/kT) cannot be linearized owing to the dipole

on the molecular properties. moment of the solvent being usually too large. For example,

1—4 i imari
Early work _on solyent effects, directed prlmgnly 00 for pNA as the solute with an estimated cavity radius of 10 au
estimate solvation energies, has led to developments in theoret"and dipole moment of water as 1.5 au thpE/KT for

cal chemistry relating to the many-electron description of the p-nitroaniline (pNAO in water turns out to be4.5 at room
solvated molecule. Three distinct models have emerged: (i) Onetemperature.

that treats the solvent molecules around the solute molecule on
the same footing as the solute, the so-called supramolecular In th_e present work we shall adopt what can be rega‘fded as
models (ii) the continuum modef,where the solvent is treated a semicontinuum model for the solvent. While the continuum

as a continuum that surrounds the solute molecule, and (iii) the model is retained to obtain the reaction field contribution, the
semicontinuum modé&tLL In the last two models thé solute is “direct” electrostatic effects between solute and solvent are

supposed to reside in a cavity not accessible by the continuum,Obtained by_ constr_ucti_ng the first solvation shell by minimizing
although for the semicontinuum model some of the solvent enthalpy (with nothing included from the entropy-related forces).

molecules are allowed to exist within the cavity as discrete  This leads us to the following model: For the continuum
entities. One important feature of the continuum model is the Part of the solutesolvent interaction we determine the cavity
fact that the solvated molecule induces polarization charges inSurface ab initio (unlike the continuum models hitherto reported)

the solvent that then give rise to an extra field at the position Y letting a solvent molecule approach a solute molecule from
of the solute. This so-called reaction field (RF) is then Vvarious directions and orientations. The corresponding minima

incorporated in the solute Hamiltonian. are taken as describing the cavity surface. With the cavity so
While the supramolecular model is theoretically straightfor- defined the corresponding Poisson equation with the bulk
ward, the execution of the model is difficult since for a dielectric constantis solved to lead to the “reaction-field”, which
satisfactory representation of the solvent a large number of IS then incorporated in the solute Hamiltonian. Using the cavity
solvent molecules need to be considered. The method is@s the starting point, we also obtain the direct contribution (as
primarily employed to study the stochastic effects by adopting OPPosed to the “reaction field”) to the total interaction energy

empirical laws of interaction (e.g., Lennard-Jones) and then from the first solvation shell. In the following we shall present
carrying out Monte Carlo or molecular dynamics calculations. @ strictly ab initio formulation of the above model of the solvated

phase except for the only empirical parameter, the dielectric
* Part of the special issue “Electronic and Nonlinear Optical Materials: constant. We shall then present some actual illustrative calcula-
Theory and Modeling”. tions on the system (pNA).
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Il. Model for Solute —Solvent Interaction

We propose here an approximate framework where the

solute-solvent interaction is partitioned into two distinct parts,
the electrostaticAWeis and the polarizatiosAWpo(S:L:

AW, = AW, s+ AW, (S’+AW L

tot —

1)

We shall treat the electrostatic part of the total solgelvent

interaction as a sum of two-body interactions between the
constituent atoms of the solute and the solvent molecules. The

two-body interactions are obtained ab initio by first computing
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whereg,'s are symmetrically orthogonalized atomic-like orbitals
(ALO). Assuming the overlapSy, = (¢4 pp[between the atomic
centers to be small, one can write approximately

@ a= @y~ 1/225ab¢b (7)

One can then show that

Cia=Cy+ llzzsabcib ®)

the d|at0m|c |nteract|0n for VaI’IOUS paIrS Of atoms by assum'ng such that the Mulliken’s Charges are g|ven approxnnate'y as

that their charge distributions are rigidly undisturbed in fully
occupied (and, hence, sphericallly symmetric) atomic shells,

except for orthogonalization distortion as the solvent molecule
approaches the solute. The interaction potential for any pair of

atoms can then be shown to have the general form

n,
—|ag,, | +

0 v

2 v Ad, | +
v'catom f f\,' w
—AJ

chomlchomz fv V4

wheren, andn, are the numbers of valence electrons on the
two atoms and, andf, the degeneracies of the valence shells.
The core contributiod\E¢qe One-electron partAh, and Ah,,
and the electron repulsion termd,y, i, ] = 1, 2, are calculated
as the interaction of the “filled shells” using the orbitals of the
neutral atoms:

r-]V
V= AE,_ + —Ah, +
vCatom VvV Catom

nV
Z —Ah, +
vcatom fv

)

=h"Dy+ D, (J — ,K)D,

core

h, =h"D,+ D, (J — /,K)D, vonatoms1,?2

Jy=D,"(@—"K)D, v,V bothon the same atom

J,=D,"(d—",K)D, vandV on different atoms (3)

whereDy is the core density matrix of the cores on both centers,

Dy is the valence density matrix on the two centers, with the
valence shells fully occupied, anlandK are the Coulomb

and exchange supermatrices. The interaction contributions are
obtained by subtracting off the asymptotic values of these

quantities.

Consider the wave functions of either the isolated solute or

solvent molecules: In this work both will be assumed to be

closed-shell and, therefore, describable by a single-determinant::-

Hartree-Fock wave function.

W = Alp;anpByp000,8... J(N)

The orbitals in the LCAO form are given by
I/)| = Zciaqoa
a
whereg’s are atomic functions. We shall re-expregs as

=5 Cug'a (6)

(4)

®)

©)

pu=25 (€.

In other words, Mulliken’s charge is simply the occupancy in
a “symmetrically orthogonalized” ALO representation of the
Hartree-Fock wave function.

The valence charge density of either solute or solvent is given
by the following expression

p(r) = zzaa(r - Ra) - ZDal,bm(bald)bm

Daom= ZZ CialCibm (10)

whereD,pm is the valence density matrix ar is the nuclar
charge (minus the core). Since the Coulomb integrals involving
the off-diagonal differential overlap.pom are, in general, very
small, we retain only the diagonal terms in eq 10. Furthermore,
we introduce the following approximation for valence shells
with degenerate subshells such as the p shells:

ZDaLamao%(z alaof Zwao = zwa.)z (11)

The approximation involves (for the p-type valence shell)
neglecting the part of the interaction corresponding to the “d”
component of the charge density, hence of the ord€(dfR*)

or higher. Specializing the indices a and b, respectively, to
denote the solute and solvent atoms, one can write the total
electrostatic interaction energy as

(Qa - Za)(Qb - Zb)

REDY VARES (12)
; R

whereZ, andZ, are the nuclear charges, the quantit@2sQy,

are the total Mulliken population densities at the centers a
and b and (ab) denotes the diatom involving the atoms a and b.
V(@) s calculated using eq 2 where the valence occupancies
{n}’s are replaced by the partial Mulliken population for the
valence shellgv}.

Thus, we use the following recipe to obtain the various two-
body potentials required for a given problem: First, we decide
upon a common level of basis for all calculations. (For the
present work we have chosen the 6-31G basis.) We consider
various pairs of atoms at various internuclear separations. Using
the orbitals obtained from atomic calculations, we first sym-
metrically orthonormalize them. With all the shells filled (i.e.,
with the same electronic configurations as the respective rare
gas atoms of the rows to which the atoms belong), the various
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parameterd\Ecqe Ahy, Adyy, €tc. are obtained and then fitted In determining the cavity according to the present model, we
to the following analytical forms: proceed as follows: We draw a large imaginary sphere around
the solute molecule with the center at the centroid of the
exp-g;R) 3 Mulliken charges defined by
fi(R) = R Z)An,inn (13)
ES

R = 1Z,— QJR/Y 1Z,— Q4 (16)

[ll. Solute —Solvent Polarization Energy

To calculate the polarization contribution, we notice that the
polarizing field is very inhomogeneous and, therefore, it is
inaccurate to represent the polarization contribution in terms
of the “total” polarizabilities of the solvent and solute molecules.
We use instead the following approach: We write the total

We then place the centroid (similarly defined) of the solvent
molecule at various points of the surface of this sphere and let
it approach radially. The interaction energy is minimized at
every radial distance by optimizing the solvent molecular
Sl orientation (not the relative positions of the atoms within the
polarization energy as the second-order perturbed energy:  go\vent molecule, which are kept frozen). The motivation of
Z-0Q using the charge centroids is to ensure that the quadrupole terms
b b & D for most systems of interest (e.g., the centrosymmetric ones)
a

r () . R .

@a bZL R, 3 RapT are small. This is important in determining the RF contributions.
AE. = — b — Using the cavity surface as the starting point we build up the
pol ,gg M _ E, first solvation shell as follows: (1) Add a solvent molecule to
a the cavity surface with its CC on the cavity surface. Orient the
molecule to attain minimum in energy. (2) Add another one
¢a likewise to the cavity surface. Optimize both its orientation as
Z b well as location of CC on the cavity surface to attain energy

ac

" minimum. (3) More molecules are similarly added until energy

E & actually goes up. (4) Go back to the first solvent molecule and

CRC) (14) optimize the location as well as orientation in the presence of
Z aa a all the assembled molecules. We repeat the same operation (4)

= _lIZZaaFa(L)'Fa(L) - l/2
for other molecules and so on until energy becomes stationary.

ac ac

where (5) As a final check on the bona fide nature of the first solvation
shell, we now allow out-of-cavity surface displacement of
Z,—Q, - Q individual solvent molecules. If any molecule is found to reach
Fa(s) = Z —Ry Fa(L) = Z—Rab (15) a minimum energy at a point deviating by more than 10% from
bC Rab3 b Rab3 its cavity surface solvenrtsolute distance, this is taken as an

indication that the molecule does not belong to the first solvation
and{ ¢4 and{¢,} are respectively the localized occupied and shell. We then have to reoptimize (carry out step (4)) the
virtual orbitals (symmetrically orthogonalized) for the atom a, solvation shell with the molecule taken out. This is an expensive
Ep is the Hartree-Fock energy,E{" represents the excited part of the calculations. Fortunately, our preliminary finding
energy when the electron occupyigg is promoted topy ™, detects no substantial deviation of the locations of the CC’s of
{ag’s are the atomic polarizabilities of the atoms in the the solvent molecules from the cavity surface.
environment of their respective molecules, aRg, is the
separation between atoms a and b. V. Reaction Field

IV. Determination of the Cavity Geometry Consider now the effect of the solvent on the solute

In this work the cavity surface is defined as consisting of the Hamiltonian. Let us denote the total potential¢gs), created
set of points where the solutsolvent interaction potential by_ the solute _and solveqt treated as a continuum at a given point
attains its minimum as the solvent molecule approaches the” N Space (in the cavity or outside). Then the polarization
solute molecule along the line joining their charge centroids Nduced in the dielectric is given by
(CC). We can justify this definition in the following way:

Although only a solitary solvent molecule is considered in our p=_ (e—1)
definition, the interaction minima in terms of the solvent solute 4
molecules approaching each other's CC should lie very close

to those in the presence of the neighboring solvent moleculesThus, one obtains

since intuitively only the interaction along the radial direction

is dependent almost exclusively on the soltgelvent interac- 1 3
tion. A further corroboration of the present definition is obtained ¢(r) = olr) — jLP'VR(M) d'R

(see below) where we actually build the first solvation shell ( 1) L

around a solvent molecule. It turns out that despite solvent — € .

solvent interaction the surface traced out by the centers of the Poll) + 4 fLVR(p(R) VR(|r - R|) (18)
molecules in the first solvation shell continues to be ap-

proximately the cavity surface, as defined above. We are whence

currently exploring a more direct verification of this model by

doing molecular dynamics on a solute molecule embedded in e—1 a 1 . .

an agsemblage of )s/olvent molecules and then studying the time- ¢(r) = ¢olr) + A5t CSa_rf; Ir —R| ds rin cavity
averaged shape and size of the first solvation shell. (29)

Vo 17)
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using Gauss'’s theorem. The direction of the nornmaf s from
the cavity outward into the solvent. Using the boundary
conditions

9(r = 0)=(r +0)
- =,

one can then obtain an equation involving only the surface
charges:

(20)

0 _9%0 =1, 3¢ o 1
an,  an, T e fcsanR an, Ir — R as (1)
In the aboveypy is the potential in free space:

Za_ Qa

bo=p ——

’ er ~R,|
~4R (22)

R

where{ Q4 are the net Mulliken charges on the various atoms
and{ Rz} denotes the position of the a-th nucleuss the dipole
moment of the solute, an is the distance from its CC. The
notation “CS” denotes cavity surface. We solve fap/on
iteratively from the eq 20 by breaking the CS into tesséta®.
Since the cavities turn out to be nearly spherical and large
enough such that the linear (i.e., the dipolar) terms predominate
we start with a value ob¢/on given by

W _ _
an

6e _un
2¢+1 R

(23)

which is the value for a spherical cavity of radiRenclosing
a central dipole moment.

VI. Application to the p-Nitroaniline (pNA) Molecule

We shall demonstrate the solvation scheme developed abovec

by applying it to calculate the solvated excitation energies,
polarizabilities, and the second-order transition moments for the
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absorption, defined by

[ (0] a8l 4|00 [O]u;|allajz,; |00
(xi. = +

' 4| AR o AE,+o |

(D]l | bCH (0] |allaz; |br
S=> (24)

3 AE, — (AE/2}
where

7 = p; — [0]z|00] (25)

and the summation is over the intermediate single and double
excitations.

In calculating the solvated values for the above quantities,
we neglect the dynamical effects entirely, assuming that the
cavity surface remains rigidly unaffected under the time-
dependent perturbations involved. Also the static dielectric
constants are used throughout (in line with previous formulations
of the continuum models), the rationale being that our calcula-
tions are primarily directed to describing the ground state of
the solute+ solvent system. While the excited state energies
calculated are the vertical ones, only the electronic parts of the
polarizability and two-photon transition moments of the solute
molecule are targeted. It can be argued that since we are
interested in “vertical” (in the FranekCondon sense) excitation
energies, we are justified in using frozen cavity surfaces in the
way we have defined them (as representing the location of the
CC'’s of the solvent molecules in the first solvation shell). For
the propertiesy; and S;° (calculated only for the solute) the
‘above approximation implies neglecting the contributions from
the nuclear motion in the solute. According to past calculations
of polarizabilities on isolated molecules in the visible range of
photon energies, the nuclear contributions have rarely been
found substantial. This is, however, not quite true for hyper-
polarizabilities. For pNA our value (as well as Luo et &.'s
RPA value) for the polarizability agrees fairly well with
experiment?

Our MSOS calculations are carried out with a doubleasis
with polarization (DZP) with d (0.2). In Table 1 we present the
excitation energies and polarizabilities (under static conditions
and for the photon energy of 0.06 hartrees), and in Table 2, the
second-order transition moments for various solvents. We
ompare the calculated excitation energies with those available
from experiments wherever available. TRg, values (shown
in the third column) represent the mean radii of the cavities as

p-nitroaniline molecule and compare with other theoretical gpained ab initio from the calculations on the ground state of
results® The ab initio formalism we adopt to generate wave pNA in the various solvents (whose dielectric constants appear
functions is the modified sum-over-states (MS@&pproach ~inthe second column). They vary significantly from solvent to
developed recently. Briefly, the method starts by first selecting solvent. However, in general, the cavities retain an ap-
a set of highest occupied molecular orbitals (HOMO) and a set proximately spherical shape except for a few small regions
of lowest unoccupied molecular orbitals (LUMO) and carrying \yhereR deviates fromRay quite markedly (as much as 30%),
out a configuration interaction (ClI) calculation consisting of all which represents the purely reaction field contributions to the
single excitations from the HOMO's to the LUMO's. Using  charge-transfer excitation energy. The fifth column in Table 1
the resulting states as the starting point, we correct them by represents the total lowering of the excitation energy as solvents
incorporating both the single excitations excluded in the above of increasing polarity are considered, with the reaction field
Cl (viz., those from lower occupied orbitals to higher unoccupied contributions calculated in the present work shown in brackets.
ones and vice versa) as well as double excitations by a first- It is to be noted that, with regard to the direct electrostatic effect
order perturbative approach. The quantities we shall concentratecontributions, these are calculated with the first solvation shell
in this work are the excitation energies, particularly those constructed around the solute molecule for the ground state
corresponding to the excitation of the ground state to the lowestwithout the continuum around it. The same solvation shell in
charge-transfer state. Also, we shall calculate the diagonalterms of the nuclear positions was used in calculating the
polarizability components;; = { axx, Oy, 077 and the second-  contribution for the excited state. In other words, we have
order transition moment§;®, of importance to two-photon  assumed that the direct effects are small except for the nearest-
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TABLE 1: Excitation Energies and Polarizabilities of Moreover, while the RPA calculations only consider the reaction
p-Nitroaniline for Various Solvents? field, in our calculations for solvated cases, on the other hand,
solvent/ Ray Eexc a the reacyion. field con_tributions reflect only. a small part of the
method ¢ (bohrs) (cm 3 AEec(cm?) @ =00 o =0.06 total excitation energies, a major part coming directly from the
gas 10 interaction between the solute and the solvent molecules of the
PWb 38432 1045 1075 first solvation shell. The experimental solvated excitation
RPAC 41802* 93.9 energie¥® are based orlmax values and probably represent
exp 35090 vibronic transitions and should not be taken too literally,
begzv‘\?,?e 221 123 _1822(659) 1047 1079 although correlation seems to improve the agreement somewhat,
RPAC 08 1234 1008 ’ as exhibited by the multiconfiguration RPA values. The RPA-
hexanol 13.3 based polarizabilities are much more sensitive to solvent
PWe 12.5 —2459(-780) 1046  107.7 environments than ours, probably because of the larger reaction
ace“;g’rﬁ; 207 9.8 —2727 108.9 field. According to our calculations, while the polarizabilities
PWP C 113 _2283(-1076) 1047  107.9 are quite weakly influenced by the presence of the solvents,
RPAC 98 2880 109.7 the effect on the two-photon amplitudes is quite strong.
—3646* Furthermore, there is an approximate inverse relationship
me%gnd . —7900 between the polarity of the solvent and the two-photon intensi-
PWP 100 —2689 (-1405) 1049  108.1 ties. _ .
RPAC 9.8 —2969 110.3 It is to be pointed out that the above calculations are
—3780* preliminary in nature and are aimed at introducing the concept
exg —8061 of ab initio cavity surface and demonstrating the importance of
DMF 36.7 various effects not necessarily included or differentiated in
PWe 11.8 —2634 (-1120) 104.7  107.9 . ! ; .
RPAS 08 —2985 1104 earlier formulations, specially those that result from the direct
—3806* electrostatic interaction between the solute molecule and the
exg —8849 first solvation shell. A more detailed study covering a broad
Walt:evr\p 78.5 101 2700 1603) 1050  108.3 range of molecules and based on a more sophisticated descrip-
RPAS 98 _3074( ) 1109 : tion of the wave function is currently in progress. Since a direct

o _ o o comparison with experiment at this stage is clearly too ambitious
2 Polarizabilities are in atomic units, photon enrgies in hartrees. The fq the properties we are interested in, our first attempt will be

numbers in parenthes_es correspond to the reaction field contrlbut_lonsto carry out supermolecular calculations on smaller systems and
in the present calculations. The starred values are based on multicon-

figuration RPA in ref 6 Present worke Reference 6¢ Reference 18.  compare the results based on the simplified approach presented
¢ Reference 19. here.

TABLE 2: Second-Order Transition Moments for Various References and Notes
Solvents (au) for the Two Strongest Two-Photon Statés

(1) Born, M.Z. Phys.192Q 1, 45.

) root root (2) Kirkwood, J. G.J. Chem. Phys1934 2, 351.

medium AEec N0, S« Sy Sy AEec N0. S« Sy Sy (3) Kirkwood, J. G.; Westheimer, B. Chem. Phys1936 6, 506.
gas 0.088 2 —14.9 3.1 1422 0.113 5-3.9 2.9 141.7 (4) Onsager, LJ. Am. Chem. Sod936 58, 1486.
benzene 0.086 2 —18.2 3.2 160.0 0.112 5-2.4 3.1 150.0 (5) van Gunsteren, W. FAngew. Chem199Q 102, 1020.
3-hexanol 0.087 2 —18.1 3.1 153.5 0.112 5-2.8 3.0 147.1 (6) Luo,Y.; Agren, H.; Jorgensen, P.; Mikkelsen, K. Adv Quantum
acetone 0.086 2 —18.1 3.2 156.7 0.112 5-2.6 3.1 148.6 Chem 1995 26, 165.
methanol 0.087 2 —18.1 3.1 153.0 0.112 5-2.9 3.0 146.8 (7) Tomasi, J.; Persico, Mchem. Re. 1994 94, 2027.
DMF 0.087 2 —18.1 3.0 150.2 0.112 5 -3.1 3.0 1455 (8) Mlkkelsen, K. V.; Ratner, MJ. Chem. Phy31980 90, 4237.

(10) Medina-Llanes, C.; Agren, H.; Mikkelsen, K.; Jensen, H. JJAa
a Excitation energies are in hartrees. Chem. Phys1989 90, 6422.

(11) Agren, A.; Medina-Llanes, C.; Mikkelsen, K.; Jensen, H. J. Aa
lying solvent molecules and that in accordance with the Franck Chem. Phys. Let1989 153 322.

. . . . (12) Miertus,S.; Scrocco, E.; Tomasi,JJ.Chem. Phys1981, 55, 117.
Condon principle all the nuclei are frozen in their ground-state (13) Miertus, S.; Tomasi, 1. Chem. Phys1982 65, 239.

positions. (14) Pascual-Ahuir, J. L.; Silla, E.; Tomasi, J.; Bonnacorsi, Raimput.
The starred numbers represent the multiconfiguration RPA Chem 1987 778, 8.

excitation energies. The sixth and the seventh columns showlg%%sA%”%rv M. A.; Olivares del Valle, F. J.; Tomasi,dl.Chem. Phys.
the polarizabilities (static and dynamic with a photon energy " (1) pas, G. P.; Dudis, D. Them. Phys. Lett1999 312 57.

of 0.06 hartrees, respectively) in the ground state. (17) Bishop, D. M.; Kirtman, BJ. Chem. Phys1991, 95, 2646;1992
We note that the RP®excitation values are in general larger 97, 5255. o ) o

than the MSOS values (most likely because of the choice of a 19§178)25B§g';e"" F.; Palmieri, P.; Brillante, A.; Taliani, @hem. Phys.

smaller cavity radius than those derived in the preset work), (1’9) Stahlin, M.: Burland, D. M. Rice, J. EEhem Phys. Lett1992

both of which are larger than the experimetta? values. 191, 245.



